Lecture 4: Parameter estimation and diagnostics in logistic regression

Claudia Czado

TU München
Overview

- Parameter estimation
- Regression diagnostics
Parameter estimation in logistic regression

loglikelihood:

\[l(\beta) := \sum_{i=1}^{n} \left[(y_i \ln \left(\frac{e^{x_i^t \beta}}{1+e^{x_i^t \beta}} \right)) + (n_i - y_i) \ln \left(1 - \frac{e^{x_i^t \beta}}{1+e^{x_i^t \beta}} \right) \right] + \text{const ind. of } \beta \]

\[= \sum_{i=1}^{n} \left[(y_i x_i^t \beta) - n_i \ln(1 + e^{x_i^t \beta}) \right] + \text{const} \]

scores:

\[s_j(\beta) := \frac{\partial l}{\partial \beta_j} = \sum_{i=1}^{n} y_i x_{ij} - n_i \frac{e^{x_i^t \beta}}{1+e^{x_i^t \beta}} x_{ij} = \sum_{i=1}^{n} x_{ij} \begin{pmatrix} y_i - n_i \frac{e^{x_i^t \beta}}{1+e^{x_i^t \beta}} \\ \frac{E(Y_i|X_i=x_i)}{E(Y|X=x)} \end{pmatrix} \quad j = 1, \ldots, p \]

\[\Rightarrow s(\beta) = X^t \left(Y - E(Y|X=x) \right) \]
Hessian matrix in logistic regression

\[
\frac{\partial^2 l}{\partial \beta_r \partial \beta_s} = - \sum_{i=1}^{n} n_i \frac{e^{x_i^t \beta}}{(1 + e^{x_i^t \beta})^2} x_{is} x_{ir} = - \sum_{i=1}^{n} n_i p(x_i)(1 - p(x_i)) x_{is} x_{ir}
\]

\[\Rightarrow H(\beta) = \left[\frac{\partial^2 l}{\partial \beta_r \partial \beta_s} \right]_{r,s=1,\ldots,p} = -X^t DX \in \mathbb{R}^{p \times p}\]

where \(D = \text{diag}(d_1, \ldots, d_n)\) and \(d_i := n_ip(x_i)(1 - p(x_i))\).

\(H(\beta)\) independent of \(Y\) (since canonical link) \(\Rightarrow E(H(\beta)) = H(\beta)\)
Existence of MLE’s in logistic regression

Proposition: The log likelihood \(l(\beta) \) in logistic regression is strict concave in \(\beta \) if \(\text{rank}(X) = p \)

Proof: \(H(\beta) = -X^tDX \)

\[
\Rightarrow Z^tH(\beta)Z = -Z^tX^tD^{1/2}D^{1/2}XZ = -\|D^{1/2}XZ\|^2
\]

\[
\Rightarrow \|D^{1/2}XZ\|^2 = 0 \iff D^{1/2}XZ = 0
\]

\[
\iff \begin{cases} X^tD^{1/2}D^{1/2}XZ = 0 \\
D^{1/2}X \text{ full rank} \Rightarrow Z = (X^tDX)^{-1}0
\end{cases}
\]

\[
\iff Z = 0 \quad q.e.d.
\]

\(\Rightarrow \) There is at most one solution to the score equations, i.e. if the MLE of \(\beta \) exists, it is unique and solution to the score equations.
Warning: MLE in logistic regression does not need to exist.

Example: \(n_i = 1 \). Assume there \(\exists \beta^* \in \mathbb{R}^p \) with

\[
\begin{align*}
 x_i^t \beta^* &> 0 \quad \text{if } Y_i = 1 \\
 x_i^t \beta^* &\leq 0 \quad \text{if } Y_i = 0
\end{align*}
\]

\[\Rightarrow l(\beta^*) = \sum_{i=1}^{n} \left[y_i x_i^t \beta^* - \ln(1 + e^{x_i^t \beta^*}) \right] = \sum_{i=1}^{n} \left[x_i^t \beta^* - \ln(1 + e^{x_i^t \beta^*}) \right] - \sum_{i=1, Y_i = 0}^{n} \ln(1 + e^{x_i^t \beta^*}) \]

Consider \(\alpha \beta^* \) for \(\alpha > 0 \to \infty \)

\[\Rightarrow l(\alpha \beta^*) = \sum_{i=1, Y_i = 1}^{n} \left\{ \alpha x_i^t \beta^* - \ln(1 + e^{\alpha x_i^t \beta^*}) \right\} - \sum_{i=1, Y_i = 0}^{n} \ln(1 + e^{\alpha x_i^t \beta^*}) \to 0 \]
for \(\alpha \to \infty \).

We know that \(L(\beta) = \prod_{i=1}^{n} p(x_i)^{Y_i} (1 - p(x_i))^{1-Y_i} \leq 1 \Rightarrow l(\beta) \leq 0 \)

Therefore we found \(\alpha \beta^* \) such that \(l(\alpha \beta^*) \to 0 \Rightarrow \) no MLE exists.
Asymptotic theory

(Reference: Fahrmeir and Kaufmann (1985))

Under regularity conditions for $\hat{\beta}_n$ the MLE in logistic regression we have

1) $\hat{\beta}_n \rightarrow \beta$ a.s. for $n \rightarrow \infty$ (consistency)

2) $V(\beta)^{1/2}(\hat{\beta}_n - \beta) \xrightarrow{D} N_p(0, I_p)$ where

$$V(\beta) = [X^t D(\beta) X]^{-1}$$ (asymptotic normality)
Logistic models for the Titanic data

Without Interaction Effects:

```r
> options(contrasts = c("contr.treatment", "contr.poly"))
> f.main_cbind(Survived, 1 - Survived) ~ poly(Age,2) + Sex + PClass
> r.main_glm(f.main,family=binomial,na.action=na.omit,x=T)
> summary(r.main)
Call: glm(formula = cbind(Survived, 1 - Survived) ~ poly(Age,
2) + Sex + PClass, family = binomial, na.action = na.omit)
Deviance Residuals:
            Min       1Q   Median       3Q      Max
-2.8       -0.72   -0.38    0.62     2.5

Coefficients:
             Value Std. Error t value
(Intercept)  2.5       0.24    10.4
poly(Age, 2)1 -14.9      2.97   -5.0
poly(Age, 2)2  3.7       2.53    1.4
       Sex   -2.6       0.20   -13.0
       PClass2nd  -1.2      0.26   -4.7
       PClass3rd  -2.5      0.28   -8.9

(Dispersion Parameter for Binomial family taken to be 1 )
  Null Deviance: 1026 on 755 degrees of freedom
Residual Deviance: 693 on 750 degrees of freedom
```
Correlation of Coefficients:

(Intercept) poly(Age, 2)1 poly(Age, 2)2

<table>
<thead>
<tr>
<th></th>
<th>poly(Age, 2)1</th>
<th>poly(Age, 2)2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.41</td>
<td>0.07</td>
</tr>
<tr>
<td>poly(Age, 2)1</td>
<td>-0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>poly(Age, 2)2</td>
<td>0.07</td>
<td>-0.02</td>
</tr>
<tr>
<td>Sex</td>
<td>-0.66</td>
<td>0.11</td>
</tr>
<tr>
<td>PClass2nd</td>
<td>-0.66</td>
<td>0.41</td>
</tr>
<tr>
<td>PClass3rd</td>
<td>-0.76</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Sex PClass2nd

poly(Age, 2)1
poly(Age, 2)2

Sex

PClass2nd 0.16
PClass3rd 0.30 0.61

> r.main$x[1:4,] # Designmatrix

(Intercept) poly(Age, 2)1 poly(Age, 2)2 Sex

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-0.0036</td>
<td>-0.026</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-0.0725</td>
<td>0.100</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-0.0010</td>
<td>-0.027</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-0.0138</td>
<td>-0.019</td>
</tr>
</tbody>
</table>

PClass2nd PClass3rd

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Analysis of Deviance:

> anova(r.main)
Analysis of Deviance Table

Binomial model

Response: cbind(Survived, 1 - Survived)

Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Term</th>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td></td>
<td>755</td>
<td>1026</td>
<td></td>
</tr>
<tr>
<td>poly(Age, 2)</td>
<td>2</td>
<td>12</td>
<td>753</td>
<td>1013</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>225</td>
<td>752</td>
<td>789</td>
</tr>
<tr>
<td>PClass</td>
<td>2</td>
<td>95</td>
<td>750</td>
<td>693</td>
</tr>
</tbody>
</table>
With Interaction Effects:

Linear Age Effect

```r
> f.inter_cbind(Survived, 1 - Survived)
  ~ (Age + Sex + PClass)^2
> r.inter_glm(f.inter,family=binomial,na.action=na.omit)
> summary(r.inter)[[3]]

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Std. Error</th>
<th>t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>2.464</td>
<td>0.835</td>
<td>2.95</td>
</tr>
<tr>
<td>Age</td>
<td>0.013</td>
<td>0.020</td>
<td>0.67</td>
</tr>
<tr>
<td>Sex</td>
<td>-0.946</td>
<td>0.824</td>
<td>-1.15</td>
</tr>
<tr>
<td>PClass2nd</td>
<td>1.116</td>
<td>1.002</td>
<td>1.11</td>
</tr>
<tr>
<td>PClass3rd</td>
<td>-2.807</td>
<td>0.825</td>
<td>-3.40</td>
</tr>
<tr>
<td>Age:Sex</td>
<td>-0.068</td>
<td>0.018</td>
<td>-3.70</td>
</tr>
<tr>
<td>AgePClass2nd</td>
<td>-0.065</td>
<td>0.024</td>
<td>-2.67</td>
</tr>
<tr>
<td>AgePClass3rd</td>
<td>-0.007</td>
<td>0.020</td>
<td>-0.35</td>
</tr>
<tr>
<td>SexPClass2nd</td>
<td>-1.411</td>
<td>0.715</td>
<td>-1.97</td>
</tr>
<tr>
<td>SexPClass3rd</td>
<td>1.032</td>
<td>0.616</td>
<td>1.67</td>
</tr>
</tbody>
</table>
```
> anova(r.inter)

Analysis of Deviance Table

Binomial model

Response: cbind(Survived, 1 - Survived)

Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Term</th>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td></td>
<td></td>
<td></td>
<td>1026</td>
</tr>
<tr>
<td>Age</td>
<td>1</td>
<td>3</td>
<td>754</td>
<td>1023</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>227</td>
<td>753</td>
<td>796</td>
</tr>
<tr>
<td>PClass</td>
<td>2</td>
<td>100</td>
<td>751</td>
<td>695</td>
</tr>
<tr>
<td>Age:Sex</td>
<td>1</td>
<td>28</td>
<td>750</td>
<td>667</td>
</tr>
<tr>
<td>Age:PClass</td>
<td>2</td>
<td>5</td>
<td>748</td>
<td>662</td>
</tr>
<tr>
<td>Sex:PClass</td>
<td>2</td>
<td>21</td>
<td>746</td>
<td>641</td>
</tr>
</tbody>
</table>

A drop in deviance of 54 = 28 + 5 + 21 on 5 df is highly significant ($p - value = 2.1e - 10$), therefore strong interaction effects are present.
Quadratic Age Effect:

\[\text{Age.poly1} = \text{poly}(\text{Age}, 2)[,1] \]
\[\text{Age.poly2} = \text{poly}(\text{Age}, 2)[,2] \]
\[f \text{.inter1}_\text{cbind}(\text{Survived}, 1 - \text{Survived}) \sim \text{Sex} + \text{PClass} + \text{Age.poly1} + \text{Age.poly2} + \text{Sex} \times \text{Age.poly1} + \text{Sex} \times \text{PClass} + \text{Age.poly1} \times \text{PClass} + \text{Age.poly2} \times \text{PClass} \]
\[r \text{.inter1}_\text{glm}(f \text{.inter1}, \text{family=binomial}, \text{na.action}=\text{na.omit}) \]
\[\text{summary}(r \text{.inter1})[[3]] \]

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Std. Error</th>
<th>t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>2.92</td>
<td>0.47</td>
<td>6.27</td>
</tr>
<tr>
<td>Sex</td>
<td>-3.12</td>
<td>0.51</td>
<td>-6.14</td>
</tr>
<tr>
<td>PClass2nd</td>
<td>-0.72</td>
<td>0.58</td>
<td>-1.24</td>
</tr>
<tr>
<td>PClass3rd</td>
<td>-3.02</td>
<td>0.53</td>
<td>-5.65</td>
</tr>
<tr>
<td>Age.poly1</td>
<td>3.28</td>
<td>7.96</td>
<td>0.41</td>
</tr>
<tr>
<td>Age.poly2</td>
<td>-4.04</td>
<td>5.63</td>
<td>-0.72</td>
</tr>
<tr>
<td>Sex:Age.poly1</td>
<td>-21.94</td>
<td>7.10</td>
<td>-3.09</td>
</tr>
<tr>
<td>Sex:PClass2nd</td>
<td>-1.23</td>
<td>0.71</td>
<td>-1.74</td>
</tr>
<tr>
<td>Sex:PClass3rd</td>
<td>1.27</td>
<td>0.62</td>
<td>2.04</td>
</tr>
<tr>
<td>PClass2nd:Age.poly1</td>
<td>-14.02</td>
<td>10.39</td>
<td>-1.35</td>
</tr>
<tr>
<td>PClass3rd:Age.poly1</td>
<td>3.72</td>
<td>9.34</td>
<td>0.40</td>
</tr>
<tr>
<td>PClass2nd:Age.poly2</td>
<td>23.07</td>
<td>9.50</td>
<td>2.43</td>
</tr>
<tr>
<td>PClass3rd:Age.poly2</td>
<td>10.99</td>
<td>7.85</td>
<td>1.40</td>
</tr>
</tbody>
</table>
> anova(r.inter1)
Analysis of Deviance Table

Binomial model
Response: cbind(Survived, 1 - Survived)

Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Term</th>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td></td>
<td>755</td>
<td>1026</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>229</td>
<td>754</td>
<td>797</td>
</tr>
<tr>
<td>PClass</td>
<td>2</td>
<td>73</td>
<td>752</td>
<td>724</td>
</tr>
<tr>
<td>Age.poly1</td>
<td>1</td>
<td>28</td>
<td>751</td>
<td>695</td>
</tr>
<tr>
<td>Age.poly2</td>
<td>1</td>
<td>2</td>
<td>750</td>
<td>693</td>
</tr>
<tr>
<td>Sex:Age.poly1</td>
<td>1</td>
<td>29</td>
<td>749</td>
<td>664</td>
</tr>
<tr>
<td>Sex:PClass</td>
<td>2</td>
<td>17</td>
<td>747</td>
<td>646</td>
</tr>
<tr>
<td>Age.poly1:PClass</td>
<td>2</td>
<td>7</td>
<td>745</td>
<td>639</td>
</tr>
<tr>
<td>Age.poly2:PClass</td>
<td>2</td>
<td>6</td>
<td>743</td>
<td>634</td>
</tr>
</tbody>
</table>

The quadratic effect in Age in the interaction between Age and PClass is weakly significant, since a drop in deviance of 641-634=7 on 2 df gives a \(p-value = .03 \).
Are there any 3 Factor Interactions?

```r
> f.inter3_cbind(Survived, 1 - Survived) ~ (Age + Sex + PClass)^3
> r.inter3_glm(f.inter3,family=binomial,na.action=na.omit)
> anova(r.inter3)
```

Analysis of Deviance Table
Binomial model
Response: cbind(Survived, 1 - Survived)
Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Term</th>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td></td>
<td>755</td>
<td>1026</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>1</td>
<td>1023</td>
<td>754</td>
<td>1023</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>796</td>
<td>753</td>
<td>796</td>
</tr>
<tr>
<td>PClass</td>
<td>2</td>
<td>695</td>
<td>751</td>
<td>695</td>
</tr>
<tr>
<td>Age:Sex</td>
<td>1</td>
<td>667</td>
<td>750</td>
<td>667</td>
</tr>
<tr>
<td>Age:PClass</td>
<td>2</td>
<td>662</td>
<td>748</td>
<td>662</td>
</tr>
<tr>
<td>Sex:PClass</td>
<td>2</td>
<td>641</td>
<td>746</td>
<td>641</td>
</tr>
<tr>
<td>Age:Sex:PClass</td>
<td>2</td>
<td>640</td>
<td>744</td>
<td>640</td>
</tr>
</tbody>
</table>

A drop of 2 on 2 df is nonsignificant, therefore three factor interactions are not present.
Grouped models:

The residual deviance is difficult to interpret for binary responses. When we group the data to get binomial responses the residual deviance can be approximated better by a Chi Square distribution under the assumption of a correct model. The data frame `titanic.group.data` contains the group data set over age.
Without Interaction Effects:

```r
> attach(titanic.group.data)
> dim(titanic.group.data)
[1] 274 5  # grouping reduces obs from 1313 to 274
> titanic.group.data[1,]
   ID Age Not.Survived Survived PClass Sex
  8  2    1      0     1st    female
> f.group
    cbind(Survived, Not.Survived) ~ poly(Age, 2) + Sex + PClass
> summary(r.group)[[3]]

<table>
<thead>
<tr>
<th>Value</th>
<th>Std. Error</th>
<th>t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>2.5</td>
<td>0.24</td>
</tr>
<tr>
<td>poly(Age, 2)1</td>
<td>-11.1</td>
<td>2.17</td>
</tr>
<tr>
<td>poly(Age, 2)2</td>
<td>2.7</td>
<td>1.90</td>
</tr>
<tr>
<td>Sex</td>
<td>-2.6</td>
<td>0.20</td>
</tr>
<tr>
<td>PClass2st</td>
<td>-1.2</td>
<td>0.26</td>
</tr>
<tr>
<td>PClass3st</td>
<td>-2.5</td>
<td>0.28</td>
</tr>
</tbody>
</table>
```
> anova(r.group)
Analysis of Deviance Table

Binomial model

Response: cbind(Survived, Not.Survived)

Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>273</td>
<td>645</td>
<td></td>
</tr>
<tr>
<td>poly(Age, 2)</td>
<td>2</td>
<td>12</td>
<td>271</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>225</td>
<td>270</td>
</tr>
<tr>
<td>PClass</td>
<td>2</td>
<td>95</td>
<td>268</td>
</tr>
</tbody>
</table>

> 1-pchisq(312,268)
[1] 0.033 # model not very good for
 # grouped data

> 1-pchisq(693,750)
[1] 0.93 # unreliable in binary case
With Interaction Effects:

```r
> f.group.inter_cbind(Survived, Not.Survived)
> ~ (Age+Sex+PClass)^2
> r.group.inter_glm(f.group.inter, family =
> binomial, na.action = na.omit)
> summary(r.group.inter) [[3]]

<table>
<thead>
<tr>
<th>Value</th>
<th>Std. Error</th>
<th>t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>2.464</td>
<td>2.92</td>
</tr>
<tr>
<td>Age</td>
<td>0.013</td>
<td>0.67</td>
</tr>
<tr>
<td>Sex</td>
<td>-0.947</td>
<td>-1.14</td>
</tr>
<tr>
<td>PClass2st</td>
<td>1.117</td>
<td>1.11</td>
</tr>
<tr>
<td>PClass3st</td>
<td>-2.807</td>
<td>-3.38</td>
</tr>
<tr>
<td>Age:Sex</td>
<td>-0.065</td>
<td>-3.68</td>
</tr>
<tr>
<td>AgePClass2st</td>
<td>-0.065</td>
<td>-2.65</td>
</tr>
<tr>
<td>AgePClass3st</td>
<td>-0.007</td>
<td>-0.35</td>
</tr>
<tr>
<td>SexPClass2st</td>
<td>-1.410</td>
<td>-1.95</td>
</tr>
<tr>
<td>SexPClass3st</td>
<td>1.033</td>
<td>1.66</td>
</tr>
</tbody>
</table>
```
> anova(r.group.inter)
Analysis of Deviance Table

Binomial model

Response: cbind(Survived, Not.Survived)

Terms added sequentially (first to last)

<table>
<thead>
<tr>
<th>Term</th>
<th>Df</th>
<th>Deviance</th>
<th>Resid. Df</th>
<th>Resid. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td></td>
<td></td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>Age</td>
<td>1</td>
<td>3</td>
<td>272</td>
<td>642</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>227</td>
<td>271</td>
<td>415</td>
</tr>
<tr>
<td>PClass</td>
<td>2</td>
<td>100</td>
<td>269</td>
<td>314</td>
</tr>
<tr>
<td>Age:Sex</td>
<td>1</td>
<td>28</td>
<td>268</td>
<td>286</td>
</tr>
<tr>
<td>Age:PClass</td>
<td>2</td>
<td>5</td>
<td>266</td>
<td>281</td>
</tr>
<tr>
<td>Sex:PClass</td>
<td>2</td>
<td>21</td>
<td>264</td>
<td>260</td>
</tr>
</tbody>
</table>

> 1-pchisq(264,260)
[1] 0.42 # residual deviance test p-value

The residual deviance test gives $p-value = .42$, i.e. **Interactions improve fit strongly.**
Interpretation of Model with Interaction:

Fitted Logits

Fitted Survival Probabilities
Diagnostics in logistic regression

Residuals: \[Y_i \sim \text{bin}(n_i, p_i) \quad p_i = \frac{e^{x_i^t \beta}}{1 + e^{x_i^t \beta}} \quad \hat{p}_i = \frac{e^{x_i^t \hat{\beta}}}{1 + e^{x_i^t \hat{\beta}}} \]

- raw residuals: \[e_i^r := Y_i - n_i \hat{p}_i \]

- Pearson residuals:
 \[e_i^P := \frac{Y_i - n_i \hat{p}_i}{(n_i \hat{p}_i (1 - \hat{p}_i))^{1/2}} \]
 \[\Rightarrow \chi^2 = \sum_{i=1}^{n} (e_i^P)^2 \]

- deviance residuals:
 \[e_i^d := \text{sign}(Y_i - n_i \hat{p}_i) (2y_i \ln \left(\frac{Y_i}{n_i \hat{p}_i} \right) + 2(n_i - y_i) \ln \left(\frac{n_i - Y_i}{n_i (1 - \hat{p}_i)} \right)) \]
 \[\Rightarrow D = \sum_{i=1}^{n} (r_i^D)^2 \]
Residual Analysis:

Residual Analysis of Ungrouped Data

![Deviance Residuals](image1)

Fitted: \((\text{Age} + \text{Sex} + \text{PClass})^2\)

Predicted: \((\text{Age} + \text{Sex} + \text{PClass})^2\)

![Pearson Residuals](image2)

Fitted: \((\text{Age} + \text{Sex} + \text{PClass})^2\)

Quantiles of Standard Normal
Residual Analysis of Grouped Data

- Deviance Residuals
 - Fitted: \((\text{Age} + \text{Sex} + \text{PClass})^2\)
 - Predicted: \((\text{Age} + \text{Sex} + \text{PClass})^2\)

- Pearson Residuals
 - Fitted: \((\text{Age} + \text{Sex} + \text{PClass})^2\)
 - Quantiles of Standard Normal
Adjusted residuals

Want to adjust raw residuals such that adjusted residuals have unit variance.

Heuristic derivation: We have shown that $\hat{\beta}$ can be calculated as a weighted \textit{LSE} with response

$$Z_i^\beta := \eta_i + (y_i - \mu_i) \frac{d\eta_i}{d\mu_i} \quad i = 1, \ldots, n$$
Here \(\eta_i = \mathbf{x}_i^t \beta = \ln \left(\frac{p_i}{1-p_i} \right) = \ln \left(\frac{n_ip_i}{n_i-n_ip_i} \right) = \ln \left(\frac{\mu_i}{n_i-\mu_i} \right) \)

\[\Rightarrow \frac{d\eta_i}{d\mu_i} = \frac{n_i-\mu_i}{\mu_i} \left[\frac{(n_i-\mu_i-(-1)\mu_i)}{(n_i-\mu_i)^2} \right] = \frac{n_i}{\mu_i(n_i-\mu_i)} = \frac{1}{n_ip_i(1-p_i)} \]

\[\Rightarrow Z_i^\beta = \mathbf{x}_i^t \beta + (y_i - n_ip_i) \frac{1}{n_ip_i(1-p_i)} \] in logistic regression

\[\Rightarrow \mathbf{Z}^\beta = \mathbf{X} \beta + D^{-1}(\beta) \epsilon \] where

\[\epsilon := \mathbf{Y} - (n_1p_1, \ldots, n_n p_n)^t \]

\[D(\beta) = \text{diag}(d_1(\beta), \ldots, d_n(\beta)), \quad d_i(\beta) := n_ip(\mathbf{x}_i)(1-p(\mathbf{x}_i)) \]

\[\Rightarrow E(\mathbf{Z}^\beta) = \mathbf{X} \beta; \quad \text{Cov}(\mathbf{Z}^\beta) = D^{-1}(\beta) \text{Cov}(\epsilon) D^{-1}(\beta) = D^{-1}(\beta) = D(\beta) \]
Recall from lec.2:
The next iteration β^{s+1} in the IWLS is given by

$$
\beta^{s+1} = (X^t D(\beta^s) X)^{-1} X^t D(\beta^s) Z^{\beta^s}
$$

At convergence of the IWLS algorithm ($s \to \infty$), the estimate $\hat{\beta}$ satisfies:

$$
\hat{\beta} = (X^t D(\hat{\beta}) X)^{-1} X^t D(\hat{\beta}) Z^{\hat{\beta}}
$$

Define

$$
e := Z^{\hat{\beta}} - X \hat{\beta} = \left(I - X (X^t D(\hat{\beta}) X)^{-1} X^t D(\hat{\beta}) \right) Z^{\hat{\beta}}
$$

If one considers $D(\hat{\beta})$ as a non random constant quantity, then we have

$$
E(e) = \left(I - X (X^t D(\hat{\beta}) X)^{-1} X^t D(\hat{\beta}) \right) \underbrace{E(Z^{\hat{\beta}})}_{= X \hat{\beta}} = 0
$$

$$
Var(e) = [I - X (X^t D(\hat{\beta}) X)^{-1} X^t D(\hat{\beta})] \underbrace{Cov(Z^{\hat{\beta}})}_{= D^{-1}(\hat{\beta})} [I - X (X^t D(\hat{\beta}) X)^{-1} X^t D(\hat{\beta})]
$$

$$
= D^{-1}(\hat{\beta}) - X (X^t D(\hat{\beta}) X)^{-1} X^t
$$
Additionally
\[
e := Z\hat{\beta} - X\hat{\beta} = D^{-1}(\hat{\beta})e^r
\]

\[
\Rightarrow e^r_i = D_i(\hat{\beta})e_i = n_i\hat{p}_i(1 - \hat{p}_i)e_i
\]

If one considers \(n_i\hat{p}_i(1 - \hat{p}_i)\) as nonrandom constant we have

\[
Var(e^r_i) = (n_i\hat{p}_i(1 - \hat{p}_i))^2 Var(e_i)
\]

\[
e^a_i := \frac{e^r_i}{Var(e^r_i)^{1/2}} \quad \text{“adjusted residuals”}
\]

\[
= \frac{e^r_i}{\left\{n_i\hat{p}_i(1 - \hat{p}_i)\right\}^2 \left[\frac{1}{n_i\hat{p}_i(1 - \hat{p}_i)} - (X(X^tD(\hat{\beta})X)^{-1}X^t)_{ii}\right]}^{1/2}
\]

\[
= \frac{e_i^P}{\left\{n_i\hat{p}_i(1 - \hat{p}_i)[1 - n_i\hat{p}_i(1 - \hat{p}_i)(X(X^tD(\hat{\beta})X)^{-1}X^t)_{ii}]\right\}^{1/2}}
\]

\[
= \frac{e_i^P}{\left[1 - n_i\hat{p}_i(1 - \hat{p}_i)(X(X^tD(\hat{\beta})X)^{-1}X^t)_{ii}\right]^{1/2}}
\]

\[
= \frac{e_i^P}{\left[1 - h_{ii}\right]^{1/2}} \quad \text{where} \quad h_{ii} := n_i\hat{p}_i(1 - \hat{p}_i)(X(X^tD(\hat{\beta})X)^{-1}X^t)_{ii}
\]
High leverage and influential points in logistic regression

(Reference: Pregibon (1981))

Linear models:

\[
\begin{align*}
Y &= X\beta + \epsilon \\
\hat{\beta} &= (X^tX)^{-1}X^tY \\
\hat{Y} &= X\hat{\beta} = HY,
\end{align*}
\]

\[
H = X(X^tX)^{-1}X^t \\
H^2 = H
\]

\[
\Rightarrow \hat{e} := Y - \hat{Y} = (I - H)Y
\]

\[
= (I - H)(Y - \hat{Y}) \quad \text{since } H\hat{Y} = H(HY) = H^2Y = HY = \hat{Y}
\]

\[
= (I - H)\hat{e}
\]

\[
\Rightarrow \text{raw residuals satisfy } \hat{e} = (I - H)\hat{e}
\]
logistic regression:

Define $H := \hat{D}^{1/2} X (X^t \hat{D} X)^{-1} X^t \hat{D}^{1/2}$ with $\hat{D} = D(\hat{\beta})$

Lemma: $e^P = (I - H)e^P$, where $e^P_i := \frac{Y_i - n_i \hat{p}_i}{(n_i \hat{p}_i (1 - \hat{p}_i))^{1/2}}$

Proof: $D(\hat{\beta}) = diag(\ldots n_i \hat{p}_i (1 - \hat{p}_i) \ldots)$ nonsingular

$\Rightarrow e^P = \hat{D}^{-1/2}(Y - \hat{Y})$

$He^P = [\hat{D}^{1/2} X (X^t \hat{D} X)^{-1}] X^t (Y - \hat{Y}) = 0 \quad (\ast)$

since $s(\hat{\beta}) = X^t (Y - \hat{Y}) = 0$

$\Rightarrow e^P = (I - H)e^P \quad q.e.d.$

Note that $H^2 = H$ as in linear models (exercise).
High leverage points in logistic regression

\[e^P = (I - H) e^P \]

\(M \) spans residual space \(e^P \). This suggests that small \(m_{ii} \) (or large \(h_{ii} \)) should be useful in detecting extreme points in the design space \(X \).

We have \(\sum_{i=1}^{n} h_{ii} = p \) (exercise), therefore we consider \(h_{ii} > \frac{2p}{n} \) as “high leverage points”.
Partial residual plot

Linear models:

Consider $X = [X_j; X_{-j}]$,

$X_{-j} = X$ with j^{th} column removed, $X_{-j} \in \mathbb{R}^{n \times (p-1)}$.

$X_j = (x_{1j}, \ldots, x_{nj})^t$ – j^{th} column of matrix X.

$e_{Y|X_{-j}} := Y - X_{-j}(X_{-j}^tX_{-j})^{-1}X_{-j}^tY = (I - H_{-j})Y,$

$= \text{raw residuals in model with } j^{th} \text{ covariable removed}$

$e_{X_j|X_{-j}} := X_j - X_{-j}(X_{-j}^tX_{-j})^{-1}X_{-j}^tX_j = (I - H_{-j})X_j$

$= \text{raw residuals in model } X_j = X_{-j}\beta_{-j}^* + \epsilon_x \quad \epsilon_x \sim N(0, \sigma_x^2) \ i.i.d.$

$= \text{measure of linear dependency of } X_j \text{ on the remaining covariates}$
The partial residual plot is given by plotting $e_{X_j|X_{-j}}$ versus $e_{Y|X_{-j}}$.

$$Y = X_{-j} \beta_{-j} + X_j \beta_j + \epsilon \quad \beta = \begin{pmatrix} \beta_{-j} \\ \beta_j \end{pmatrix}$$

$$\Rightarrow (I - H_{-j})Y = (I - H_{-j})X_{-j} \beta_{-j} + (I - H_{-j})X_j \beta_j + (I - H_{-j})\epsilon$$

$$= 0 \quad \text{since} \quad (I - X_{-j}(X_{-j}^tX_{-j})^{-1}X_{-j})X_{-j} = X_{-j} - X_{-j} = 0$$

$$\Rightarrow e_{Y|X_{-j}} = \beta_j e_{X_j|X_{-j}} + \epsilon^* \quad \text{Model (*)}$$

The LSE of β_j in (*), denoted by $\hat{\beta}_j^*$ satisfies $\hat{\beta}_j^* = \hat{\beta}_j$ where $\hat{\beta}_j$ is LSE in $Y = X \beta + \epsilon$ (exercise).

Since $\hat{\beta}_j^* = \hat{\beta}_j$ we can interpret the partial residual plot as follows:

If partial residual plot scatters
- around 0 $\Rightarrow X_j$ has no influence on Y
- linear $\Rightarrow X_j$ should be linear in model
- nonlinear $\Rightarrow X_j$ should be included with this nonlinear form.
Simpler plot: Plot X_j versus $e_{Y|X_{-j}}$. Same behavior if X_j does not depend on other covariates.
This follows from the fact, that ML estimators of β_{-j} for two models with and without j^{th} covariate coincide, if X_j is orthogonal to X_{-j}. Then

$$e = Y - X_{-j} \hat{\beta}_{-j} - X_j \hat{\beta}_j$$

$$\Rightarrow e_{Y|X_{-j}} (:= Y - X_{-j} \hat{\beta}_{-j}) = \hat{\beta}_j X_j + e, \quad (*)$$

where e is distributed around 0 and components of e are assumed nearly independent.
Partial residual plot

Logistic regression:
Landwehr, Pregibon, and Shoemaker (1984) propose to use

\[e(Y|X_{-j})_i := \frac{Y_i - n_i \hat{p}_i}{n_i \hat{p}_i (1 - \hat{p}_i)} + \hat{\beta}_j x_{ij} \]

as partial residual

Heuristic derivation:
Justification: IWLS

Recall: \(Z^\hat{\beta} = X^\hat{\beta} + \hat{D}^{-1}e^r \) “obs. vector”

\[\text{cov}(\hat{D}^{-1}e^r) = \hat{D}^{-1} \Rightarrow \hat{\beta} = (X^t \hat{D} X)^{-1} X^t \hat{D} Z^\hat{\beta} \]
Consider \(\text{logit}(p) = X\beta + L\gamma, \) \(L \in \mathbb{R}^n \) new covariable with \(L \perp X. \)

\[
Z_L := X\hat{\beta} + L\hat{\gamma} + \hat{D}_L^{-1}e_{L}^r \quad \text{with}
\]

\[
e_{L_i}^r := y_i - n_i \frac{e^{x_i^t\hat{\beta} + l_i\hat{\gamma}}}{1 + e^{x_i^t\hat{\beta} + l_i\hat{\gamma}}} \quad L = (l_1, \ldots, l_n)^t
\]

\[
\hat{D}_L := \text{diag}(\ldots, n_i\hat{p}_{L_i}(1 - \hat{p}_{L_i}), \ldots)
\]

As in linear models (see (*)) partial residuals can be defined as

\[
e(Y|X_{-j})_i := (\hat{D}_L^{-1})_{ii}e_{L_i}^r + \hat{\gamma}_l = \frac{y_i - n_i\hat{p}_{L_i}}{n_i\hat{p}_{L_i}(1 - \hat{p}_{L_i})} + \hat{\gamma}_l
\]

\(\Rightarrow \) partial residual plot in logistic regression: plot \(x_{ij} \) versus \(e(Y|X_{-j})_i. \)

For binary data we need to smooth data.
Cook’s distance in linear models

\[D_i \ := \ ||X\hat{\beta} - X\hat{\beta}_{-i}||^2 / p\hat{\sigma}^2 \]

\[= \ (\hat{\beta} - \hat{\beta}_{-i})^t (X^t X)(\hat{\beta} - \hat{\beta}_{-i}) / p\hat{\sigma}^2 \]

\[= \ \frac{\hat{\varepsilon}_i^2 h_{ii}}{p\hat{\sigma}^2 (1 - h_{ii})^2} \]

Measures change in confidence ellipsoid when \(i^{th} \) obs. is removed.
Cook’s distance in logistic regression

Using LRT it can be shown, that

$$\{ \beta : -2 \ln \left\{ \frac{L(\beta)}{L(\hat{\beta})} \right\} \leq \chi^2_{1-\alpha, p} \}$$

is an approx. $100(1 - \alpha)$ % CI for β

$$\Rightarrow D_i := -2 \ln \left\{ \frac{L(\hat{\beta}_{-i})}{L(\hat{\beta})} \right\}$$

measures change when i^{th} obs. removed; difficult to calculate. Using Taylor expansion we have:

$$\{ \beta : -2 \ln \left\{ \frac{L(\beta)}{L(\hat{\beta})} \right\} \leq \chi^2_{1-\alpha, p} \} \approx \{ \beta : (\beta - \hat{\beta})^t X^t \hat{D} X (\beta - \hat{\beta}) \leq \chi^2_{1-\alpha, p} \}$$

$$\Rightarrow D_i \approx (\hat{\beta}_{-i} - \hat{\beta})^t X^t \hat{D} X (\hat{\beta}_{-i} - \hat{\beta})$$
Approximate $\hat{\beta}_{-i}$ by a single step Newton Rapson starting from $\hat{\beta}$:

$$
\Rightarrow \quad \hat{\beta}_{-i} \approx \hat{\beta} - \frac{(X^t DX)^{-1}x_i(y_i - n_i \hat{p}_i)}{1-h_{ii}} \quad \text{(exercise)}
$$

where

$$
h_{ii} = n_i \hat{p}_i (1 - \hat{p}_i) \{X (X^t DX)^{-1} X^t\}_{ii}
$$

$$
\Rightarrow \quad D_i \approx \frac{(e_i^a)^2 h_{ii}}{(1-h_{ii})} = \left(e_i^P \right)^2 \frac{h_{ii}}{(1-h_{ii})^2} =: D_i^a
$$

where

$$
e_i^a = \frac{e_i^P}{(1-h_{ii})^{1/2}}, \quad e_i^P := \frac{Y_i - n_i \hat{p}_i}{(n_i \hat{p}_i(1-\hat{p}_i))^{1/2}}
$$

In general D_i^a underestimates D_i, but shows influential observations.
References

